International Workshop on Organic Matter Spectroscopy 2013 Organized by Université du Sud Toulon-Var and Aix-Marseille Université 16-19th July 2013, La Garde City, France <u>woms13.univ-tln.fr</u>

FLUOROPOLE Picosecond tunable laser Fluorescence lifetime measurement PROTEE Laboratory protee.univ-tln.fr

PROTEE

PROTEE laboratory (Processus of Transfer and Exchange in the Environment) is consisting of 4 research teams:

- CAPTE: Analytical Chemistry Applied to Environmental Transfer
 - **EBMA:** Aquatic Environments Biology
 - EB2M: Marine Molecular Biology
 - ISO: Instrumentation, Spectroscopy and Optics
- Research topic of CAPTE & ISO: Induced fluorescence
- Fluoropole
 - Scientific facility dedicated to environment study

FLUOROPOLE

Time Resolved Laser Spectroscopy (TRLS)

Picosecond tunable laser

Spectrofluorimetry

Spectrofluorometer

Excitation-Emission Matrix (EEM)

Excitation-Emission Matrix (EEM)

Spectral contributions

Trilinear model

• For the k-th sample compounded of N fluorophores, fluorescence intensity $x_k(\lambda_{ex}, \lambda_{em})$ is given by:

$$x_k \big(\lambda_{\text{ex}}, \lambda_{\text{em}} \big) = \sum_{n=1}^N \, c_{kn} \, \varphi_n \, \epsilon_n \big(\lambda_{\text{ex}} \big) \gamma_n \big(\lambda_{\text{em}} \big)$$

> c_{kn} : concentration of the fluorophore n > ϕ_n : quantum yield of fluorescence > ε_n : molecular absorption coefficient > γ_n : emission spectrum of fluorophore n

Trilinear model

 Each measured value x_{i,j,k} is only depending on three vectors a_i, b_i and c_k:

$$x_{i,j,k} = \sum_{n=1}^{N} a_{in} b_{jn} c_{kn}$$

where $i \in [1, I], j \in [1, J]$ and $k \in [1, I]$

In the general case, the trilinear model is defined by:

$$x_{i,j,k} = \sum_{n=1}^{N} a_{in} b_{jn} c_{kn} + e_{i,j,k}$$

K

Pretreatment

- The measured EEMs do not follow the trilinear model because Rayleigh and Raman scattering phenomena.
- It is thus necessary to suppress these signals using a specific numerical treatment.

Trilinear decomposition

SPECTRAL CONTRIBUTIONS

- Spectrofluorimetry
 - Requires K samples
 - Continuous light excitation
 - Spectral contributions

- Time Resolved Laser Spectroscopy
 - Requires one sample
 - Laser pulse
 - Spectral contributions
 - Lifetime associated to each spectral contribution

Emission spectra obtained for different delays

Time evolution of fluorescence intensity

14

Time evolution model

15

Time deconvolution

Picosecond tunable laser

- Picosecond laser
 - > Wavelength: 1064 nm
 - Pulse duration (half-width): 30 ps
 - > Energy: 50 mJ
 - ➢ Repetition rate: 20 Hz

Picosecond tunable laser

- Picosecond laser
 - > Wavelength: 1064 nm
 - > Pulse duration (half-width): 30 ps
- Harmonic generator
 - Wavelengths: 1064 nm, 532 nm, 355 nm and 266 nm
- Optical Parametric Oscillator (OPO)
 - Wavelength ranges: 210 nm 340 nm, 379 nm 419 nm, 420 nm - 680 nm, and 740 nm - 2300 nm

- Liquid samples
 - Standard molecules
 - Estimated emission spectra and lifetimes obtained by TRLF
 - >Good agreement with the results from the literature
 - > Validation of the measurement system
 - Natural Organic Matter (NOM)
 - Comparison with spetral contributions obtained by spectrofluorimetry and trilinear decomposition
 - >Estimated lifetime of fluorescent components

Liquid samples

- NOM + PAH
 - Polycyclic aromatic hydrocarbons
 - Controlled mixtures of NOM and PAH
 - Same spectral contributions obtained previously
 - Detection threshold lower than those obtained by chromatography for certain PAH

Solid samples

- OLED
 - > Spectral contributions
 - > Fluorescence and phosphorescence lifetimes

WOMS 2013

APPLICATIONS

Natural Organic Matter (NOM)

Component 1 : fulvic acid ($\tau_1 = 1,1$ ns) Component 2 : humic acid ($\tau_2 = 7,0$ ns)

Natural Organic Matter and PAH

WOMS 2013

OLED

• Time evolution of emission spectra

OLED

• Time evolutions

Measured fluorescence Modelised fluorescence Contribution 1 (τ_1) Contribution 2 ($\tau_2 > \tau_1$)

FLUOROPOLE

Partners

LRSAE (UNSA)

RSN

DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Sciences Analytiques Environnement

LCE-LCP (Aix-Marseille Université)

IRA Envolure – INRA Montpellier

NUPEGEL (Universidade de São Paulo)